Wednesday, 16 January 2013

AMPLE: An Adaptive Traffic Engineering System Based on Virtual Routing Topologies


NANO SCIENTIFIC RESEARCH CENTRE PVT.LTD.,  AMEERPET, HYD
WWW.NSRCNANO.COM, 09640648777, 09652926926


DOT NET PROJECTS LIST--2013
DOT NET 2013 IEEE PAPERS


AMPLE: An Adaptive Traffic Engineering System Based on
Virtual Routing Topologies

Abstract
            Handling traffic dynamics in order to avoid network congestion and subsequent service disruptions is one of the key tasks performed by contemporary network management systems. Given the simple but rigid routing and forwarding functionalities in IP base environments, efficient resource management and control solutions against dynamic traffic conditions is still yet to be obtained. In this article, we introduce AMPLE — an efficient traffic engineering and management system that performs adaptive traffic control by using multiple virtualized routing topologies. The proposed system consists of two complementary components: offline link weight optimization that takes as input the physical network topology and tries to produce maximum routing path diversity across multiple virtual routing topologies for long term operation through the optimized setting of link weights. Based on these diverse paths, adaptive traffic control performs intelligent traffic splitting across individual routing topologies in reaction to the monitored network dynamics at short timescale. According to our evaluation with real network topologies and traffic traces, the proposed system is able to cope almost optimally with unpredicted traffic dynamics and, as such, it constitutes a new proposal for achieving better quality of service and overall network performance in IP networks.
Existing system
            In Existing System, IGP-based TE mechanisms are only confined to offline operation and hence cannot cope efficiently with significant traffic dynamics. There are well known reasons for this limitation: IGP-based TE only allows for static traffic delivery through native IGP paths, without flexible traffic splitting for dynamic load balancing. In addition, changing IGP link weights in reaction to emerging network congestion may cause routing re-convergence problems that potentially disrupt ongoing traffic sessions. In effect, it has been recently argued that dynamic/online route re computation is to be considered harmful even in the case of network failures, let alone for dealing with traffic dynamics.

Proposed System
            In proposed system consists of two complementary components: offline link weight optimization that takes as input the physical network topology and tries to produce maximum routing path diversity across multiple virtual routing topologies for long term operation through the optimized setting of link weights. Based on these diverse paths, adaptive traffic control performs intelligent traffic splitting across individual routing topologies in reaction to the monitored network dynamics at short timescale.
According to our evaluation with real network topologies and traffic traces, the proposed system is able to cope almost optimally with unpredicted traffic dynamics and, as such, it constitutes a new proposal for achieving better quality of service and overall network performance in IP networks.

Modules
1.                  Virtual traffic allocation
2.                  Offline Link Weight Optimization
3.                  Network Monitoring
4.                  Adaptive Traffic Control

System Requirements:

Hardware Requirements:
·         System                  : Pentium IV 2.4 GHz.
·         Hard Disk             : 40 GB.
·         RAM                     : 512 Mb.




Software Requirements:

·         Operating system : - Windows XP.
·        Coding Language : C#.Net




No comments:

Post a Comment