Tuesday, 22 January 2013

Design and Simulation of UART



Design and Simulation of UART

Abstract

The Universal Asynchronous Receiver/Transmitter (UART) controller is the key component of the serial communications subsystem of a computer. The UART takes bytes of data and transmits the individual bits in a sequential fashion. At the destination, a second UART re-assembles the bits into complete bytes. Serial transmission of digital information (bits) through a single wire or other medium is much more cost effective than parallel transmission through multiple wires. A UART is used to convert the transmitted information between its sequential and parallel form at each end of the link. Each UART contains a shift register which is the fundamental method of conversion between serial and parallel forms.
The UART usually does not directly generate or receive the external signals used between different items of equipment. Typically, separate interface devices are used to convert the logic level signals of the UART to and from the external signaling levels.
An UART, universal asynchronous receiver / transmitter is responsible for performing the main task in serial communications with computers. The device changes incoming parallel information to serial data which can be sent on a communication line. A second UART can be used to receive the information. The UART performs all the tasks, timing, parity checking, etc. needed for the communication. The only extra devices attached are line driver chips capable of transforming the TTL level signals to line voltages and vice versa.


SOFTWARE: VERILOG.
DEVELOPMENT TOOLS: XILINX ISE, MODELSIM.
APPLICATIONS: The UART can be utilized for a variety of serial interface applications, UART is appropriate for peripherals where simplicity and low manufacturing cost are more important than speed.

No comments:

Post a Comment